

Trench gate field-stop IGBT, HB series 650 V, 60 A high speed

Datasheet - production data

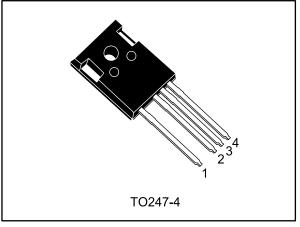
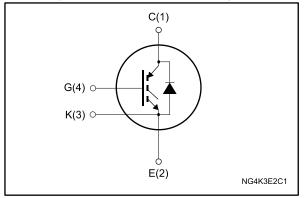



Figure 1: Internal schematic diagram

Features

- Maximum junction temperature: T_J = 175 °C
- Kelvin pin
- Low V_{CE(sat)} = 1.6 V (typ.) @ I_C = 60 A
- Minimized tail current
- Tight parameter distribution
- Safe paralleling
- Low thermal resistance
- Very fast soft recovery antiparallel diode

Applications

- Photovoltaic inverter
- High frequency converter

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the new HB series of IGBTs, which represents an optimum compromise between conduction and switching loss to maximize the efficiency of any frequency converter. A faster switching event can be achieved by the Kelvin pin, which separates power path from driving signal. Furthermore, the slightly positive $V_{CE(sat)}$ temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGW60H65DFB-4	G60H65DFB	TO247-4	Tube

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	11
4	Packag	e information	12
	4.1	TO247-4 package information	12
5	Revisio	on history	14

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vces	Collector-emitter voltage (V _{GE} = 0 V)	650	V
1.	Continuous collector current at T _C = 25 °C	80 ⁽¹⁾	А
lc	Continuous collector current at T _c = 100 °C	60	A
Icp ⁽²⁾	Pulsed collector current	240	А
V_{GE}	Gate-emitter voltage	±20	V
L	Continuous forward current at T_C = 25 °C	80 ⁽¹⁾	А
IF	Continuous forward current at T _c = 100 °C	60	A
I _{FP} ⁽²⁾	Pulsed forward current		А
Ртот	Total dissipation at $T_C = 25 \ ^{\circ}C$		W
Tstg	Storage temperature range -55 to 150		°C
TJ	Operating junction temperature range	-55 to 175	C

Notes:

⁽¹⁾Current level is limited by bond wires.

 $\ensuremath{^{(2)}}\ensuremath{\mathsf{Pulse}}$ width is limited by maximum junction temperature.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
RthJC	Thermal resistance junction-case IGBT	0.4	
R _{thJC}	Thermal resistance junction-case diode 1.14		°C/W
RthJA	Thermal resistance junction-ambient 50		

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

l able 4: Static characteristics						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)CES}$	Collector-emitter breakdown voltage	$V_{GE} = 0 V$, $I_C = 2 mA$	650			V
		$V_{GE} = 15 \text{ V}, I_C = 60 \text{ A}$		1.6	2.0	
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 60 A, T _J = 125 °C		1.75		V
	voltage	$V_{GE} = 15 \text{ V}, \text{ I}_{C} = 60 \text{ A},$ T _J = 175 °C		1.85		
		I _F = 60 A		2	2.6	
VF	Forward on-voltage	I _F = 60 A, T _J = 125 °C		1.7		V
		I _F = 60 A, T _J = 175 °C		1.6		
$V_{\text{GE(th)}}$	Gate threshold voltage	$V_{CE} = V_{GE}, I_C = 1 \text{ mA}$	5	6	7	V
I _{CES}	Collector cut-off current	$V_{GE} = 0 V, V_{CE} = 650 V$			25	μA
I _{GES}	Gate-emitter leakage current	$V_{CE} = 0 V, V_{GE} = \pm 20 V$			±250	nA

Table 4: Static characteristics

Table 5: Dynamic characteristics

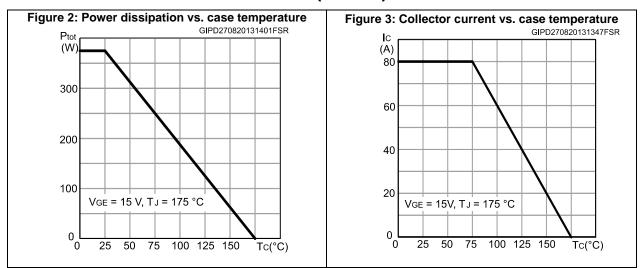
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	7792	-	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	262	-	nF
Cres	Reverse transfer capacitance	VGE - 0 V		158	-	
Qg	Total gate charge	Vcc = 520 V, Ic = 60 A,	-	306	-	
Q _{ge}	Gate-emitter charge	V _{GE} = 0 to 15 V (see <i>Figure 29: " Gate</i>	-	126	-	nC
Q _{gc}	Gate-collector charge	charge test circuit"	-	58	-	

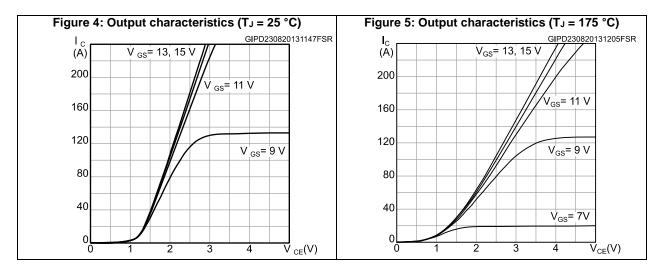
Electrical characteristics

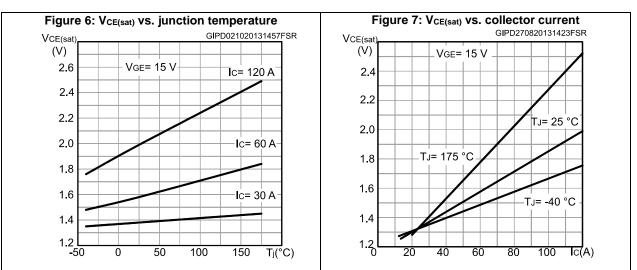
_	Table 6: IGBT switching characteristics (inductive load)					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	65	-	ns
tr	Current rise time		-	26	-	ns
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 60 A,	-	1846	-	A/µs
t _{d(off)}	Turn-off-delay time	$V_{GE} = 400 \text{ V}, \text{ IC} = 60 \text{ A},$ $V_{GE} = 15 \text{ V}, \text{ R}_{G} = 10 \Omega$	-	261	-	ns
t _f	Current fall time	(see Figure 28: "Test circuit	-	21	-	ns
Eon ⁽¹⁾	Turn-on switching energy	for inductive load switching")	-	346	-	μJ
E _{off} ⁽²⁾	Turn-off switching energy		-	1161	-	μJ
Ets	Total switching energy		-	1507	-	μJ
t _{d(on)}	Turn-on delay time		-	61	-	ns
tr	Current rise time		-	30	-	ns
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 60 A,	-	1640	-	A/µs
t _{d(off)}	Turn-off-delay time	$V_{GE} = 15 \text{ V}, \text{ R}_{G} = 10 \Omega$	-	284	-	ns
t _f	Current fall time	T _J = 175 °C (see <i>Figure 28: " Test circuit</i>	-	45	-	ns
Eon ⁽¹⁾	Turn-on switching energy	for inductive load switching")	-	644	-	μJ
E _{off} ⁽²⁾	Turn-off switching energy		-	1633	-	μJ
E _{ts}	Total switching energy		-	2277	-	μJ

Notes:

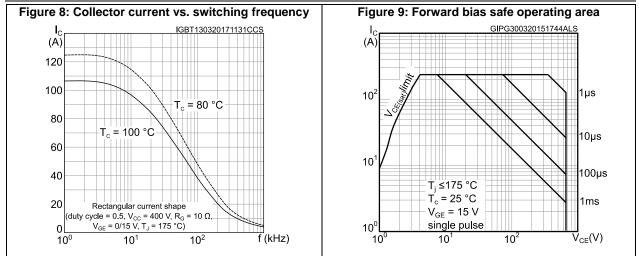
 $\ensuremath{^{(1)}}\xspace$ Including the reverse recovery of the diode.

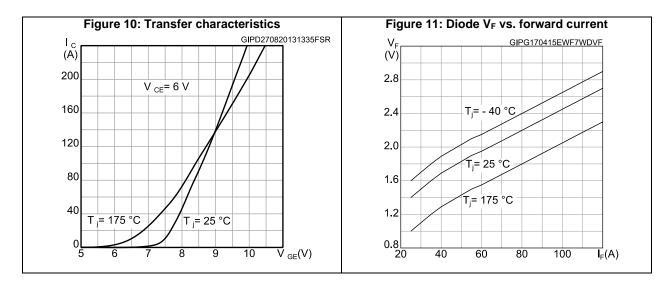

 $\ensuremath{^{(2)}}\xspace$ Including the tail of the collector current.

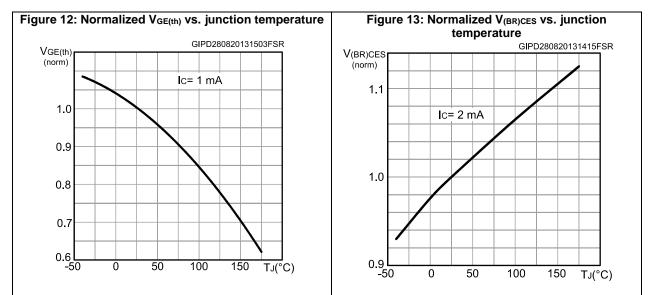

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
trr	Reverse recovery time		-	60	-	ns
Qrr	Reverse recovery charge	$I_F = 60 A, V_R = 400 V,$	-	99	-	nC
Irrm	Reverse recovery current	V _{GE} = 15 V, di/dt = 1000 A/µs	-	3.3	-	А
dlrr/dt	Peak rate of fall of reverse recovery current during tb	(see Figure 28: " Test circuit for inductive load switching")	-	187	-	A/µs
Err	Reverse recovery energy		-	68	-	μJ
trr	Reverse recovery time		-	310	-	ns
Qrr	Reverse recovery charge	$I_F = 60 \text{ A}, V_R = 400 \text{ V},$	-	1550	-	nC
Irrm	Reverse recovery current	V _{GE} = 15 V, di/dt = 1000 A/µs, TJ = 175 °C	-	10	-	А
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b	(see Figure 28: " Test circuit for inductive load switching")	-	59	-	A/µs
Err	Reverse recovery energy		-	674	-	μJ


Table 7: Diode switching characteristics (inductive load)

2.1 Electrical characteristics (curves)

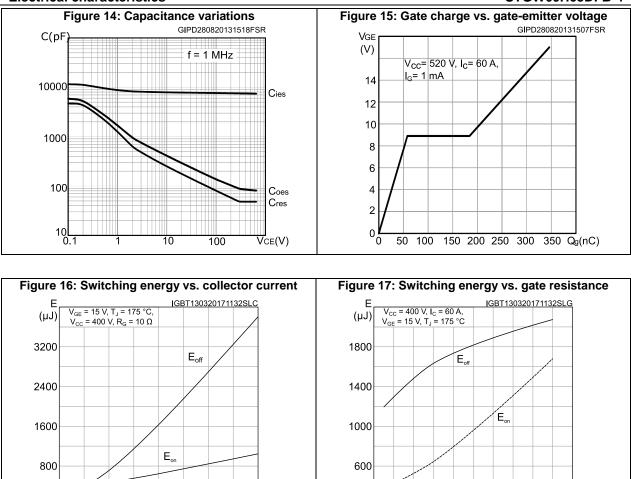


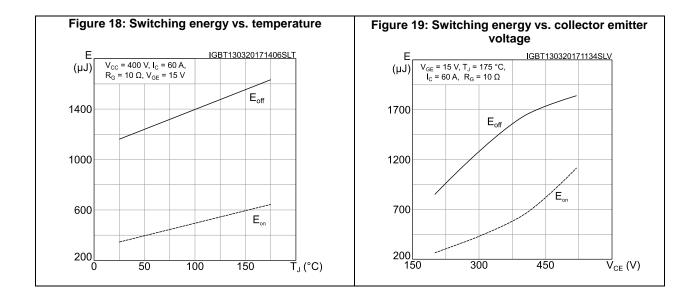

DocID029378 Rev 2



57

Electrical characteristics





DocID029378 Rev 2

200 | 4

8

12

16

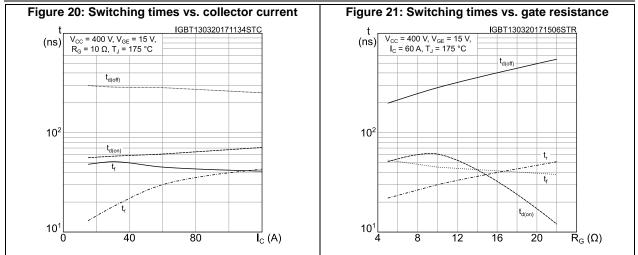
20

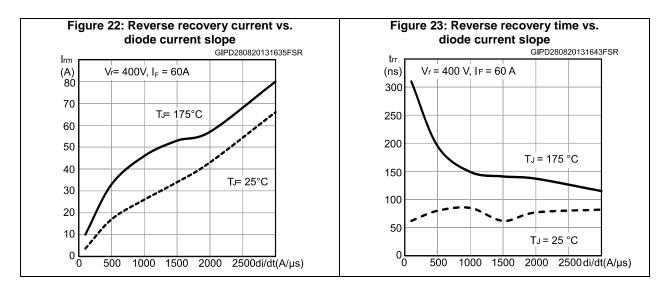
 $\vec{R}_{G}(\Omega)$

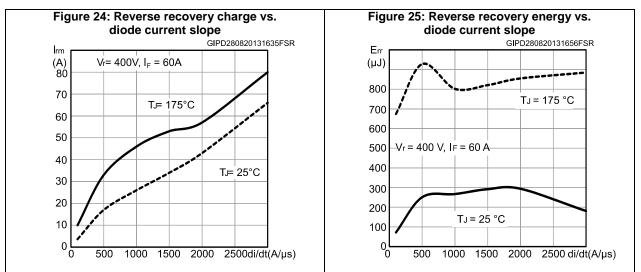
DocID029378 Rev 2

0

30

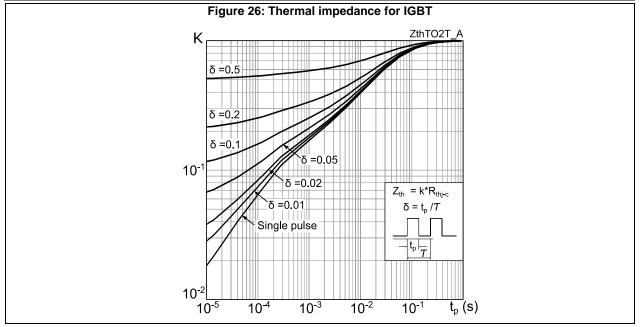

60

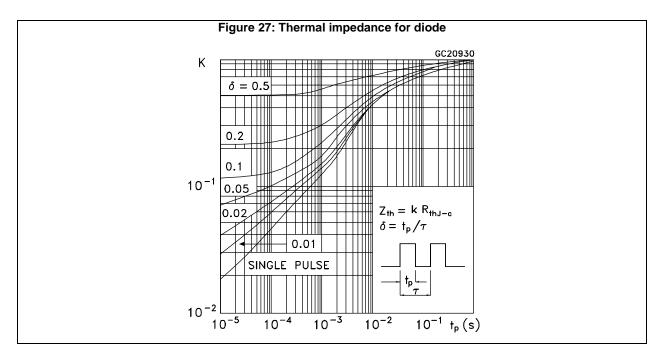

90


 $\overline{I}_{C}(A)$

57

Electrical characteristics

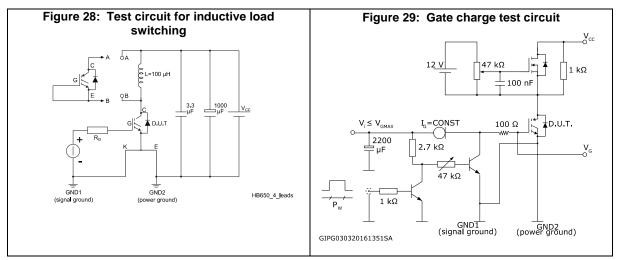


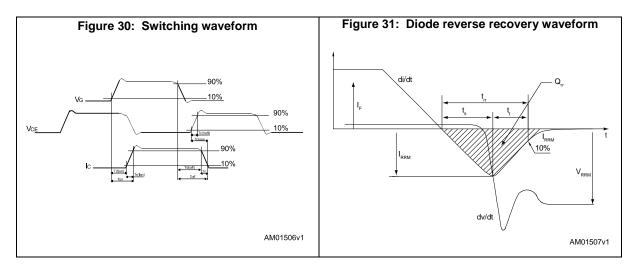


DocID029378 Rev 2

Electrical characteristics

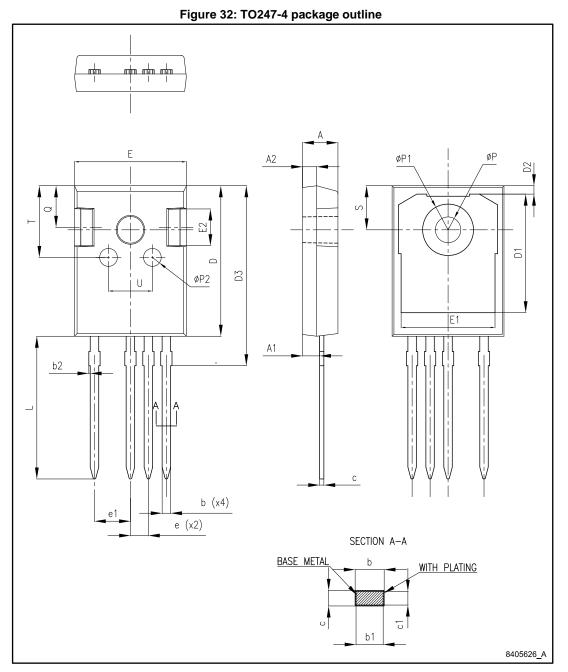
STGW60H65DFB-4





10/15

3 Test circuits



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO247-4 package information

Package information

65DFB-4			Package information
	Table 8: TO247-	4 mechanical data	
Dim.		mm	
Dim.	Min.	Тур.	Max.
A	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.29
b1	1.15	1.20	1.25
b2	0		0.20
С	0.59		0.66
c1	0.58	0.60	0.62
D	20.90	21.00	21.10
D1	16.25	16.55	16.85
D2	1.05	1.20	1.35
D3	24.97	25.12	25.27
E	15.70	15.80	15.90
E1	13.10	13.30	13.50
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	2.44	2.54	2.64
e1	4.98	5.08	5.18
L	19.80	19.92	20.10
Р	3.50	3.60	3.70
P1			7.40
P2	2.40	2.50	2.60
Q	5.60		6.00
S		6.15	
Т	9.80		10.20
U	6.00		6.40

57

5 Revision history

Table 9: Document revision history	Table 9:	Document	revision	history
------------------------------------	----------	----------	----------	---------

Date	Revision	Changes
30-May-2016	1	First release
21-Mar-2017	2	Updated Table 2: "Absolute maximum ratings" and Table 6: "IGBT switching characteristics (inductive load)". Updated Section 2.1: "Electrical characteristics (curves)". Minor text changes

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STGW60H65DFB-4